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Abstract. The stability properties of intermediate-order cli-
mate models are investigated by computing their Lyapunov
exponents (LEs). The two models considered are PUMA
(Portable University Model of the Atmosphere), a primitive-
equation simple general circulation model, and MAOOAM
(Modular Arbitrary-Order Ocean-Atmosphere Model), a
quasi-geostrophic coupled ocean–atmosphere model on a β-
plane. We wish to investigate the effect of the different lev-
els of filtering on the instabilities and dynamics of the atmo-
spheric flows. Moreover, we assess the impact of the oceanic
coupling, the dissipation scheme, and the resolution on the
spectra of LEs.

The PUMA Lyapunov spectrum is computed for two dif-
ferent values of the meridional temperature gradient defin-
ing the Newtonian forcing to the temperature field. The in-
crease in the gradient gives rise to a higher baroclinicity and
stronger instabilities, corresponding to a larger dimension of
the unstable manifold and a larger first LE. The Kaplan–
Yorke dimension of the attractor increases as well. The con-
vergence rate of the rate function for the large deviation law
of the finite-time Lyapunov exponents (FTLEs) is fast for all
exponents, which can be interpreted as resulting from the ab-
sence of a clear-cut atmospheric timescale separation in such
a model.

The MAOOAM spectra show that the dominant atmo-
spheric instability is correctly represented even at low resolu-
tions. However, the dynamics of the central manifold, which
is mostly associated with the ocean dynamics, is not fully
resolved because of its associated long timescales, even at
intermediate orders. As expected, increasing the mechanical

atmosphere–ocean coupling coefficient or introducing a tur-
bulent diffusion parametrisation reduces the Kaplan–Yorke
dimension and Kolmogorov–Sinai entropy. In all considered
configurations, we are not yet in the regime in which one can
robustly define large deviation laws describing the statistics
of the FTLEs.

This paper highlights the need to investigate the natural
variability of the atmosphere–ocean coupled dynamics by as-
sociating rate of growth and decay of perturbations with the
physical modes described using the formalism of the covari-
ant Lyapunov vectors and considering long integrations in
order to disentangle the dynamical processes occurring at all
timescales.

1 Introduction

The dynamics of the atmosphere and the climate system is
characterised by the property of sensitivity to initial states
(Kalnay, 2003). This feature implies that any small errors
in the initial conditions will progressively amplify until the
forecast becomes useless, or in other words cannot be distin-
guished from any random state taken from the climatology
of the system. This property was already recognised in the
early developments of weather forecasts (Thompson, 1957)
and was associated with the non-linear nature of determin-
istic dynamical systems by Lorenz (1963). These pioneering
works sowed the seeds for the development of predictabil-
ity theories for the atmosphere and climate, and for impor-
tant progress in the context of dynamical systems, in partic-
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ular the development of chaos theory (Eckmann and Ruelle,
1985). This sensitivity property affects not only the dynamics
of errors in the initial conditions, but also the errors that are
present either in the model parametrisations or in the bound-
ary conditions (Nicolis, 2007; Nicolis et al., 2009). Clarify-
ing the nature of this sensitivity is therefore crucial in the per-
spective of improving forecasts at short, medium, and long
term (Vannitsem, 2017).

The property of sensitivity to initial conditions in deter-
ministic dynamical systems is often evaluated by comput-
ing the Lyapunov exponents that correspond to the asymp-
totic rates of amplification or decay of infinitesimally small
perturbations, e.g. Eckmann and Ruelle (1985), Ott (2002),
and Cencini et al. (2010). A system is chaotic if it possesses
at least one positive Lyapunov exponent. Since the eighties
many dynamical systems in various domains of science have
been analysed from this perspective. This has revealed the
presence of chaos in systems ranging from the fields of chem-
istry and biology to turbulence, e.g. Yamada and Ohkitani
(1988), Gallez and Babloyantz (1991), Manneville (1995),
and Sprott (2010). In the early days the investigations es-
sentially dealt with low-order systems, but later the scope
was broadened to include spatially distributed systems with
a large number of degrees of freedom, in coupled maps, e.g.
Nicolis et al. (1992), Vannitsem and Nicolis (1996), Cencini
et al. (2010), and Yang and Radons (2013), and in partial dif-
ferential equations, e.g. Manneville (1985, 1995), Vannitsem
and Nicolis (1994), and Yang and Radons (2013). Recently,
Lyapunov analysis was the subject of a special issue edited
by Cencini and Ginelli (2013).

In parallel to these investigations in the context of basic
sciences, several attempts to compute Lyapunov exponents in
the context of meteorological and climate models have been
made (see Vannitsem (2017)), in particular in intermediate-
order atmospheric quasi-geostrophic models (with O(1000)
variables) (Legras and Ghil, 1985; Vannitsem and Nicolis,
1997; Lucarini et al., 2007; Schubert and Lucarini, 2015,
2016). These analyses indicate that if realistic boundary con-
ditions and forcings are imposed on the model under investi-
gation, the number of positive exponents is high, which im-
plies that the solution for the atmosphere lives on a high-
dimensional attractor. This suggests at first sight that the
number of degrees of freedom needed to describe the dynam-
ics is high and cannot be reduced to a low-order system.

However, the atmosphere cannot be treated as an au-
tonomous system, as it interacts with other components of the
climate system. These other components are characterised
by longer timescales of motions. They are typically less in-
tensely affected by some of the physical processes responsi-
ble for atmospheric instabilities, most notably convective and
baroclinic instability. Moreover, the energetics of the atmo-
sphere is mainly driven by thermodynamic processes that are
dominated by the inhomogeneous absorption of solar radia-
tion. The surface oceanic circulation, by contrast, is mostly
mechanically driven by atmospheric winds (Lucarini et al.,

2014). On even longer timescales, buoyancy fluxes are an
important driver for the deep ocean’s thermohaline circula-
tion.

This raises the question as to the impact of the coupling to
other sub-domains of the climate system: are the other sub-
domains of the climate system stabilising the atmosphere or
not? Vannitsem et al. (2015) partly addressed this question in
the context of coupled low-order ocean–atmosphere systems.
They found that the presence of the ocean and its exchanges
(heat and momentum) with the atmosphere can drastically re-
duce the instability properties of the flow, confirming earlier
results of Nese and Dutton (1993). As discussed below, the
role of the ocean in modulating and impacting atmospheric
instabilities is far from trivial.

Yet the problem of the predictability (in terms of Lya-
punov instability) of the full-scale climate system including
the different sub-domains is still open. Recently a new cou-
pled ocean–atmosphere model was developed that could help
answer key questions on the predictability properties of this
type of system (De Cruz et al., 2016). The model was coined
MAOOAM for Modular Arbitrary-Order Ocean-Atmosphere
Model. The modular design of MAOOAM allows one to eas-
ily explore different model parameters and resolutions. In
particular, the coupling strength between the ocean and the
atmosphere should modify the predictability properties of the
flow as illustrated in (Vannitsem et al., 2015). Moreover, the
model resolution is also expected to play an important role in
the instability properties of the flow as discussed in Lucarini
et al. (2007) in the context of an atmospheric model.

1.1 The properties of the tangent space

As originally envisioned by Ruelle (1979), it is possible
to associate with each Lyapunov exponent a correspond-
ing infinitesimal perturbation that co-varies with the orbit
that grows or decays asymptotically with the rate given by
the corresponding exponent. These physical modes are usu-
ally referred to as covariant Lyapunov vectors (CLVs). The
application of such a formalism to explore the properties
of the tangent space was pioneered by Legras and Vautard
(1995) and Trevisan and Pancotti (1998), before Ginelli et al.
(2007) and Wolfe and Samelson (2007) provided efficient
algorithms to compute them for high-dimensional systems.
The CLVs have been used to study e.g. spatio-temporal chaos
(Pazó et al., 2008, 2010), Rayleigh–Bénard convection (Xu
and Paul, 2016), and the dynamics of the mid-latitude atmo-
sphere in the quasi-geostrophic (QG) approximation (Schu-
bert and Lucarini, 2015, 2016). Schubert and Lucarini (2015,
2016) have also underlined that CLVs allow for generalisa-
tion of the classic normal mode instability of fixed stationary
states to the case of chaotic background state (e.g. Charney,
1947; Eady, 1949; Pedlosky, 1964) and allow for associat-
ing unstable/stable modes with specific paths of energy ex-
change and conversion. Trevisan et al. (2010) and Carrassi
et al. (2008) also showed that performing data assimilation
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on the unstable manifold spanned by the CLVs correspond-
ing to positive and neutral Lyapunov exponents is extremely
efficient because it allows one to focus on the portion of the
tangent space supporting the growth of errors.

Additionally, CLVs allow for understanding the properties
of the tangent space and assess the hyperbolicity of the sys-
tem, through the analysis of the statistics of the angles be-
tween the stable and unstable tangent manifolds across the
attractor. These angles should always be bounded away from
0 or π in the ideal case of uniform hyperbolicity. This point
of view complements the investigation of the statistical prop-
erties of finite-time Lyapunov exponents (FTLEs): the prob-
ability density functions of the FTLEs whose long term aver-
ages correspond to positive exponents do not cross zero in the
case of uniform hyperbolicity. Note that the uniform hyper-
bolicity is key to defining the structural stability of a chaotic
dynamical system and provides, through the chaotic hypoth-
esis by Gallavotti and Cohen (1995), an important working
hypothesis for constructing the statistical mechanics of high-
dimensional chaotic systems, even in the case that such a
system is not uniformly hyperbolic. Note that uniform hy-
perbolicity also allows for establishing a rigorous response
theory for chaotic dynamical systems (Ruelle, 2009), which
has also been shown to apply well in complex systems where
there is no reason to believe that such stringent condition on
the tangent space is obeyed; see, e.g., Lucarini et al. (2017).

1.2 Multiscale properties

As is well known, geophysical fluid dynamical (GFD) sys-
tems are characterised by relevant processes on multiple spa-
tial and temporal scales of motion (Schneider, 2006; Vallis,
2006). These scales of motion can be isolated by assuming
dominant dynamical balances and performing corresponding
asymptotic expansions of the dynamical equations (Klein,
2010). A possible way to look at the signature of such a di-
verse range of dynamical processes in a nonlinear, chaotic
setting can be found by considering the general idea pro-
posed by Gallavotti (2014) according to which one can ex-
pect to find that LEs corresponding to smaller timescales are
associated with CLVs characterised by small spatial scales.
By looking at the properties of the structure of each CLV, one
should ideally be able to understand what kind of dynamical
processes (e.g. QG vs. mesoscale) are mainly responsible for
such a physical mode.

The problem becomes particularly interesting when con-
sidering the coupling of two sub-domains with vastly differ-
ent timescales, as done in the case of a low-order coupled
ocean–atmosphere system in Vannitsem and Lucarini (2016).
Three different manifolds were isolated in the model, the
usual (highly) unstable manifold mainly associated with the
dynamics of the atmosphere, a highly dissipative manifold
also mainly associated with the dynamics of the atmosphere,
and an extremely weakly (un-)stable manifold, that will be
referred to here as the central manifold, essentially domi-

nated by the dynamics and thermodynamics of the ocean but
coupled to the atmosphere as well. The presence of a nontriv-
ial central manifold is typical of the so-called partially hyper-
bolic systems (Pesin, 2004). The CLVs corresponding to the
central manifold are geometrically quasi-degenerate, so that
errors propagate easily between the various modes and im-
pact both the atmosphere and the ocean. The corresponding
FTLEs are strongly correlated and each have a rather slow
decay of correlations, so that large deviation laws cannot
be effectively estimated (Kifer, 1990; Touchette, 2009; Pazó
et al., 2013; Laffargue et al., 2013). A particular consequence
of this feature is that errors affecting the central manifold dis-
play a complex super-exponential behaviour. The question
is therefore what the resolution of the coupled atmosphere–
ocean model should be and what the time of observation
should be such that a better separation emerges between such
modes.

1.3 Programmatic goals

We wish to provide some first steps of a wider research pro-
gramme aimed at performing a systematic investigation of
the properties of the tangent space of GFD systems in a tur-
bulent regime of motion. A first objective is to gain a better
understanding of the multiscale properties of the dynamics
and of the energy exchanges occurring across such scales.
Furthermore, this programme aims at understanding the rele-
vance of violations to the uniform hyperbolicity conditions in
terms of predictability on different timescales, including the
response – in a statistical mechanical sense – of the system
to static and time-dependent perturbations.

In the present paper, we explore for the first time the Lya-
punov spectra of the primitive-equation model, PUMA, and
of intermediate-order configurations of the coupled ocean–
atmosphere system, MAOOAM. The first model is charac-
terised by the presence of multiple scales of motions result-
ing from the fact that ageostrophic motions are not filtered,
as opposed to the QG case (Klein, 2010). Instead, in the
second model the multiscale properties come from the fact
that the two represented geophysical fluids have largely dif-
ferent internal timescales. For PUMA, we consider the first
200 Lyapunov exponents for two different meridional tem-
perature gradients. We study the properties of the Lyapunov
spectrum and of the estimates of the Kaplan–Yorke dimen-
sion and Kolmogorov–Sinai entropy (Eckmann and Ruelle,
1985). In the case of MAOOAM, we investigate the role of
dissipation introduced in the model (linear friction and effec-
tive diffusion) and the impact of the resolution of the models.
For both models, the existence of large deviation laws of the
FTLEs is tested.

In Sect. 2, the two models are described and Sect. 3 is de-
voted to a brief description of the Lyapunov instability anal-
ysis and the experimental set-ups. Section 4 summarises the
results obtained so far and in Sect. 5 we present our future
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programme, which aims to clarify the instabilities of high-
resolution systems.

2 Model description

2.1 PUMA

The Portable University Model of the Atmosphere (PUMA)
was introduced by Fraedrich et al. (1998). The intent of its
developers was to design a model that gets close to state-of-
the-art circulation models and at the same time is still easy
to use in teaching and research by single scientists. PUMA is
the dynamical core of the Planet Simulator (PLASIM) which
is a fully coupled climate model of intermediate complex-
ity. PLASIM has been frequently used to study storm tracks
(Fraedrich and Kirk, 2005), study tipping points (Lucarini
et al., 2010; Boschi et al., 2013) or create large ensembles
for climate change experiments allowing for interesting ap-
plications in economic modelling (Holden et al., 2014) or to
assess the feasibility of linear response theory (Ragone et al.,
2016; Lucarini et al., 2017).

Let us briefly summarise the equations of motion of
PUMA and how the model is integrated in time. For fur-
ther details we refer the reader to the PUMA User’s Guide
(Fraedrich et al., 1998). PUMA solves the primitive equa-
tions, which are derived from the Navier–Stokes equation on
a rotating sphere by assuming approximate hydrostatic bal-
ance. This means that (convective) motions which are char-
acterised by a vertical acceleration with a size comparable to
gravity are filtered out (Holton, 2004). The prognostic equa-
tions as written in PUMA’s code have four prognostic fields,
the relative vorticity η, the divergenceD, the logarithm of the
surface pressure lnps, and the temperature T . These equa-
tions are
∂ (η+ f )

∂t
=

1
1−µ2

∂Fv

∂λ
−
∂Fu

∂µ
+Pη (1)

∂D

∂t
=

1
1−µ2

∂Fu

∂λ
−
∂Fv

∂µ

−

(
U2
+V 2

2(1−µ2)
+8+ T0 lnps

)
+PD (2)

∂ps

∂t
=−

1∫
0

Adσ (3)

∂T ′

∂t
=−

1
1−µ2

∂(UT ′)

∂λ
−
∂(V T ′)

∂µ
+DT ′

− σ̇
∂T

∂σ
+ κ

T

p
ω+

J

cp
+PT (4)

where the vorticity is defined as η = ∂xv−∂yu and the diver-
gence is defined as D = ∂xu+ ∂yv. Additionally, one takes
into account the hydrostatic relation

∂8

∂ lnσ
=−T (5)

and T ′ is defined as T ′ = T −T0 with T0 = 250 K. Some ab-
breviations have been used:

Fu = V (η+ f )− σ̇
∂U

∂σ
− T ′

∂ lnps

∂λ

Fv =−U (η+ f )− σ̇
∂V

∂σ
− T ′

(
1−µ2

) ∂ lnps

∂µ

A=D+V · ∇ lnps

with U = ucosφ and V = v cosφ. The variables used in this
equation can be found in Table 1.

PUMA is forced by Newtonian cooling which accounts in
a crude yet effective way for the emission and the absorption
of long- and short-wave radiation and for the heat conver-
gence associated with convective processes (following Held
and Suarez, 1994). This process is described by the equations

J

cp
+PT =

TR (φ,σ )− T

τR
+HT , (6)

TR (φ,σ )= T
vert

R (σ )+ f (σ)T hor
R (φ), (7)

where TR is the temperature restoration field that depends
on the fixed meridional pole-to-Equator temperature gradient
1TEP and the pole-to-pole gradient1TNS. The latter gradient
is zero in our experiments, so that we have equatorial sym-
metry in our boundary conditions and each solution we find
is accompanied by a mirrored solution at the Equator. For
completeness, we also add the full equations of the restora-
tion field, and we refer the reader to Fraedrich et al. (1998)
for a more detailed account:

T hor
R (φ)=1TNS

sin(φ)
2
−1TEP

(
sin2φ−

1
3

)
, (8)

T vert
R (σ )=1Ttrop+

√
L

2

(
ztp− z(σ )

)2
+ S2

+
L

2

(
ztp− z(σ )

)
, (9)

f (σ)=

 sin
(
π

2

(
σ − σtp

1− σtp

))
, if σ ≥ σtp

0, if σ < σtp.

(10)

Here, σtp is the height of the tropopause, whereas ztp is
the global constant height of the tropopause. S is a techni-
cal smoothing parameter. Finally, the hyperdiffusion HT in
Eq. (6) is defined asHT =∇8T and parametrises small-scale
interactions.

PUMA uses spherical harmonics and grid-point fields
of the prognostic variables. Utilising the Fourier transform
along the zonal direction and a Legendre transformation,
PUMA computes the linear terms in spectral space and
the non-linear terms in grid-point space. The time-stepping
scheme is a combination of a leap-frog scheme with the
Robert–Asselin filter.

The PUMA User’s Guide includes more details and a com-
plete description of the exact implementation and form of the
various forcings (Fraedrich et al., 1998).
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Table 1. Symbols and variables in the PUMA equations.

Symbol Description

T temperature
T0 reference temperature
T ′ = T − T0 temperature deviation from T0
η relative vorticity
D divergence
ps surface pressure
8 geopotential
t time
λ,φ longitude, latitude
µ= sinφ
σ =

p
ps

sigma vertical coordinate
σ̇ = dσ

dt vertical velocity in the σ -system
ṗ =

dp
dt vertical velocity in the p-system

u,v zonal, meridional component of horizontal
velocity

V horizontal velocity with components U , V
f Coriolis parameter
J diabatic heating rate
cp specific heat of dry air at constant pressure
κ adiabatic coefficient

2.2 MAOOAM

Although the atmospheric dynamics of both models are
largely governed by the same processes, MAOOAM dif-
fers in many respects from the stand-alone PUMA model.
Most importantly, the atmosphere of MAOOAM features
both a mechanical and a thermal coupling with a shallow-
water ocean layer, which is absent in PUMA. Furthermore,
MAOOAM is a mid-latitude model which uses the quasi-
geostrophic approximation (Charney and Straus, 1980) on a
β-plane (Vallis, 2006), whereas PUMA is a global primitive-
equation model, in which the filtering is applied at a much
smaller scale. The representation of the dynamical fields dif-
fers accordingly, with MAOOAM adopting a Fourier basis,
using products of sine and cosine functions that respect the
boundary conditions of a zonally periodic atmosphere over a
rectangular ocean basin (De Cruz et al., 2016).

The dynamics of MAOOAM’s two-layer atmosphere is
described by the quasi-geostrophic vorticity equations, ex-
pressed in terms of the streamfunction fields ψ1

a at 250 hPa
and ψ3

a at 750 hPa as in Charney and Straus (1980),

∂

∂t

(
∇

2ψ1
a

)
+ J (ψ1

a ,∇
2ψ1

a )+β
∂ψ1

a
∂x

=−k′d∇
2(ψ1

a −ψ
3
a )+

f0

1p
ω, (11)

∂

∂t

(
∇

2ψ3
a

)
+ J (ψ3

a ,∇
2ψ3

a )+β
∂ψ3

a
∂x

=+k′d∇
2(ψ1

a −ψ
3
a )−

f0

1p
ω− kd∇

2(ψ3
a −ψo), (12)

in which the vertical velocity ω can be eliminated by apply-
ing the hydrostatic relation and the ideal gas law, as detailed
in De Cruz et al. (2016).

Following Pierini (2011), the equation of motion for the
ocean layer is described by

∂

∂t

(
∇

2ψo−
ψo

L2
R

)
+ J

(
ψo,∇

2ψo

)
+β

∂ψo

∂x

=−r∇2ψo+
C

ρh
∇

2(ψ3
a −ψo). (13)

The prognostic equations for the atmospheric and oceanic
temperature fields, using an energy balance scheme as in Bar-
sugli and Battisti (1998), are

γa

(
∂Ta

∂t
+ J (ψa,Ta)− σω

p

R

)
=−λ(Ta− To)+ εaσBT

4
o − 2εaσBT

4
a +Ra, (14)

γo

(
∂To

∂t
+ J (ψo,To)

)
=−λ(To− Ta)− σBT

4
o + εaσBT

4
a +Ro. (15)

The quartic terms in these equations are linearised by de-
composing the temperature fields around a spatially and tem-
porally constant equilibrium temperature, Ta = T

0
a +δTa and

To = T
0

o +δTo, and solving the quartic equation for the equi-
librium temperature (Vannitsem et al., 2015).

The thermal wind relation allows one to link the at-
mospheric temperature anomaly δTa to the baroclinic
streamfunction θa ≡ (ψ

1
a −ψ

3
a )/2, more specifically δTa =

2f0θa/R. Hence, the remaining independent dynamical
fields are the barotropic atmospheric streamfunction field
ψa, defined as ψa ≡ (ψ

1
a +ψ

3
a )/2, the oceanic streamfunc-

tion field ψo, and the temperature anomalies δTa and δTo of
the atmosphere and the ocean. The other parameters and vari-
ables that feature in the MAOOAM equations are explained
in Table 2.

The model equations are nondimensionalised, and the dy-
namical fields are expanded in a configurable set of Fourier
modes. The MAOOAM code computes the coefficients for
the resulting set of ordinary differential equations (ODEs)
as algebraic formulae of the wavenumbers. These ODEs are
then integrated using a fourth-order Runge–Kutta integration
scheme. We refer the reader to De Cruz et al. (2016) for more
details on the expansion of the dynamical fields in terms of
Fourier modes, the computation of the coefficients, and the
tensorial implementation of the ODEs.

In what follows, we will use a shorthand notation that uses
the maximum wavenumbers Nx and Ny to specify the model
resolution. If the resolution of the ocean and the atmosphere
are the same, the model resolution is referred to as Nx ×Ny ;
otherwise, it is denoted as atm.Nx,a×Ny,a, oc.Nx,o×Ny,o.
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Table 2. Variables and parameters in the MAOOAM equations.

Variable (units) Description

ψo, ψa (m2 s−1) streamfunction of the ocean, atmosphere
ω = dp/dt (Pa s−1) vertical velocity in pressure coordinates
To, Ta (K) temperature of the ocean, atmosphere; Tx = T 0

x + δTx
δTo, δTa (K) temperature anomaly of the ocean, atmosphere

Parameter (units) Description

n= 2Ly/Lx meridional to zonal aspect ratio
Ly = πL (km) meridional extent of the domain
f0 (s−1) Coriolis parameter at 45◦ latitude
λ (W m−2 K−1) heat transfer coefficient at the ocean–atmosphere interface
r (s−1) friction coefficient at the bottom of the ocean layer
Co, Ca (W m−2) insolation coefficient of the ocean, atmosphere
kd (s−1) friction coefficient at the ocean–atmosphere interface
k′
d

(s−1) friction coefficient between the atmospheric layers
h (m) depth of the ocean layer
d = C/(ρh) (s−1) mechanical ocean–atmosphere coupling coefficient
R (J kg−1 K−1) gas constant of dry air
LR (km) reduced Rossby deformation radius of the ocean
ρ (kg m−3) density of the ocean
σB (W m2 K−4) Stefan–Boltzmann constant
σ (m2 s−2 Pa−2) static stability of the atmosphere
β (m−1 s−1) Rossby parameter df

dy
γo, γa (J m−2 K−1) specific heat capacity of the ocean layer, atmosphere
T 0

o , T 0
a (K) constant solution for the temperature of the ocean, atmosphere

εa grey-body atmosphere emissivity

3 Methodology

3.1 Computation of the Lyapunov exponents

Let us write the evolution laws of the autonomous system
presented in Sect. 2 as a dynamical system:

dx

dt
= f (x,α) (16)

where x is a vector containing the entire set of relevant vari-
ables x = (x1, . . .,xN ) such as temperature or wind velocity,
projected on a relevant set of modes as described in Sect. 2.
The function f is a nonlinear function of the variables x and
α represents a set of parameters.

Let us consider a small perturbation along the trajec-
tory, x(t), generated by model (16), denoted δx(t). Provided
that this perturbation is sufficiently small (ideally infinitely
small), its dynamics can be described by the linearised equa-
tion,

dδx
dt
=
∂f

∂x

∣∣∣∣
x(t)

δx (17)

and a formal solution can be written as

δx(t)=M(t, t0)δx(t0) (18)

where the matrix M is referred to as the resolvent matrix or
propagator. This matrix M is responsible for the amplifica-
tion or contraction of the errors during the time period t− t0.
In order to get information independent of the initial or fi-
nal time, a limit (t − t0)→∞ should be taken. Oseledets
(1968, 2008) demonstrates that provided that the system is
ergodic, the following limit exists for almost all initial con-
ditions x(t0)= x0,

lim
t→∞

(MM∗)1/2(t−t0) =3x0 , (19)

where M∗ is the adjoint of M. The backward Lyapunov expo-
nents (Ershov and Potapov, 1998; Pazó et al., 2010) are then
defined as the natural logarithm of the eigenvalues of 3x0 .
These are usually represented in decreasing order and the full
set of exponents is called the Lyapunov spectrum. Other def-
initions are available but will not be discussed here since we
do not use them in this study. These can be found in Eckmann
and Ruelle (1985) and Legras and Vautard (1995), and in a
recent work in the context of the coupled ocean–atmosphere
(Vannitsem and Lucarini, 2016).

If one or more LEs are positive, small errors on the initial
conditions of the system grow exponentially and the system
is chaotic. In that case, the time horizon of the system’s pre-
dictability is proportional to the inverse of the largest Lya-
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punov exponent, 1
λ1

. As this predictability horizon is ex-
pressed in days for operational forecasting, we also express
the exponents λi in units day−1. To translate the spectrum of
LEs into spatial scales of the instabilities in an unambiguous
way, the CLVs must also be determined. However, if there
is scale-dependent dissipation, the largest negative LEs are
most likely to be associated with the smallest, most dissipa-
tive scales.

The computation of the backward Lyapunov exponents
follows the standard algorithm of (Shimada and Nagashima,
1979; Benettin et al., 1980) based on the Gram–Schmidt or-
thogonalisation.

1. An ensemble E of N perturbation vectors is randomly
initialised.

2. At every time step ti , a matrix Pi that represents the
linear propagator from ti−1 to ti is computed using the
tangent linear model along the model state trajectory.
Pi is the equivalent of the matrix M for a finite time
difference ti − ti−1. We take into account the numer-
ical integration scheme when computing Pi , by eval-
uating the model Jacobian at all intermediate points
of the scheme. We have implemented the second- and
fourth-order Runge–Kutta schemes, which require two
and four evaluations of the Jacobian per time step, re-
spectively.

3. As the model is integrated forward from time ti to
ti+b, the corresponding linear propagator Pi,i+b is ap-
proximated by multiplying the b matrices, Pi,i+b =
Pi+b. . .Pi+1. In the experiments that follow, we have
chosen b = 1.

4. Every b time steps, E is evolved with Pi,i+b, and Gram–
Schmidt orthogonalised (using a QR decomposition).
The local Lyapunov spectrum is computed from the di-
agonal of R.

5. Mean and variance of the local Lyapunov exponents are
calculated.

The full Lyapunov spectrum of a model allows us to com-
pute some additional interesting properties of its attractor.
One of these is the Kaplan–Yorke or Lyapunov dimension
DKY, which is an estimation of the information dimension
D1. D1 is known to be less than or equal to the capacity or
box-counting dimensionD0, also referred to as the fractal di-
mension (Frederickson et al., 1983). DKY is defined as (Ka-
plan and Yorke, 1979)

DKY = k+
λ1+ λ2+ . . .+ λk

|λk+1|
, (20)

where k is the highest index for which the sum of the largest
k Lyapunov exponents is still strictly positive.

The second important property of the attractor is the
Kolmogorov–Sinai or metric entropy hKS, a quantity that de-
scribes the rate of growth of the Shannon entropy (Eckmann

and Ruelle, 1985; Boffetta et al., 2002), which characterises
the quantity of information necessary to locate the solution
on its attractor. Its upper bound is the sum of the positive
Lyapunov exponents,

hKS ≤
∑
λi>0

λi, (21)

with the equality proven for a very particular class of sys-
tems, known as Axiom A systems. Here the KS entropy will
be assumed to be close to the sum of positive exponents, and
hence this sum will be referred to as the KS entropy.

3.2 Large deviation laws

Since the Lyapunov exponents are obtained by considering
limiting conditions where the initial perturbations are very
small and the time span over which the growth or decay rate
is very long, they cannot reasonably be used to study pre-
dictability outside such conditions. FTLEs (Fujisaka, 1983;
Abarbanel et al., 1991) have been proposed to address such
shortcomings, with the caveat that they do not enjoy the ex-
tremely beneficial mathematical properties (especially norm
independence) that characterise the Lyapunov exponents.

In this paper, we focus on the FTLEs and their relation to
the asymptotic mean LEs. Hence, we are interested in aver-
ages σ jm over a time m of one backward Lyapunov exponent
λj and its statistics. As discussed in Schalge et al. (2013),
Pazó et al. (2013), and Laffargue et al. (2013), some dynami-
cal systems have the property that for a finite, but largem, the
fluctuations of their FTLEs can be described by a large de-
viation law (Kifer, 1990; Touchette, 2009). This is the case
for Axiom A systems, and invoking the chaotic hypothesis,
extends to certain types of non Axiom A systems. For the
finite-time backward LEs and for a large m, we will verify
the following relation for the distribution P of the averages:

P
(
σ
j
m = x

)
∝ exp

(
−mIj (x)

)
. (22)

Ij (x) is the rate function, which is independent of m. The
rate function can be computed directly from this relation as

Ij (x)= lim
m→∞

−
1
m

log
(
P
(
σ
j
m = x

))
. (23)

If x represents a time series, we have to take the autocorre-
lation into account. The FTLEs for the models under consid-
eration have a non-zero autocorrelation. To account for this,
the time series are decomposed into blocks that are decorre-
lated. For each LE, we find the smallest block size, called the
decorrelation time Tdecorr. The time Tdecorr is chosen to be the
time lag when the autocorrelation drops below 1/e.

3.3 Experimental design: PUMA

We choose a simple set-up of PUMA. In this spirit, we also
switch off orography. The system is forced via a constant
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temperature gradient between the Equator and the respec-
tive poles, as detailed in Sect. 2.1. We conduct simulations
at a horizontal resolution of T42, which amounts to roughly
250 km. In grid-point space this corresponds to a Gaussian
grid with 64 latitudes and 128 longitudes. In the vertical di-
rection we restrict the resolution to 10σ levels. The integra-
tion scheme uses a time step of 1 h.

The objective of our experiments with PUMA is to com-
pute the backward Lyapunov exponents. For this we perform
spin-up simulations for 30 years from random initial condi-
tions. We then obtain the first 200 Lyapunov exponents using
the Benettin algorithm described in Sect. 3.1. We allow the
algorithm to converge for 5 years and finally obtain a time se-
ries of 25 years for all LEs. In order to explore two different
chaotic regimes with many positive LEs, we perform two ex-
periments with an Equator-to-pole temperature gradient TEP
of 50 and 60 K, respectively (with 1TNS = 0).

Note that in order to compute the Lyapunov exponents, it is
necessary to construct the tangent linear of PUMA. We gen-
erated parts of the code using the program TAF by FastOpt
(Giering and Kaminski, 2003).

3.4 Experimental design: MAOOAM

Table 3 lists the values of the physical parameters that are
used in the present study. These are selected to lie within
the realistic ranges previously derived by Vannitsem and
De Cruz (2014), and correspond to the set-up used by
De Cruz et al. (2016). In addition, we explore different values
of the mechanical ocean–atmosphere coupling coefficient d
and the eddy viscosity coefficients νa and νo, as well as a
range of model resolutions.

All experiments are performed with the same integra-
tion parameters. The time step of 0.2 nondimensional time
units corresponds to 32.3 min in dimensional units. Before
calculating the Lyapunov spectrum, a transient run of 108

nondimensional time units is performed, corresponding to
30 726 years. Using the tangent linear model of MAOOAM,
the backward Lyapunov exponents are then computed using
the algorithm described in Sect. 3.1. In our simulations, the
orthogonalisation is performed every time step, i.e. b = 1.
The Lyapunov spectrum is computed from simulations of
614 years.

The experiments are performed for different resolutions as
discussed in Sect. 2 and for different dissipation schemes as
described below.

– nodissip

This experiment corresponds to the set-up of De Cruz
et al. (2016). In addition to the variables listed in Ta-
ble 3, the mechanical ocean–atmosphere coupling pa-
rameter d is set to 1.1× 10−7 s−1.

– nodissip-reducedstress

For this “reduced-stress” experiment, the coupling pa-
rameter d is reduced to 4× 10−8 s−1.

Table 3. Model parameter values that are identical across all
MAOOAM configurations used in this study.

Parameter (unit) Value Parameter (unit) Value

n= 2Ly/Lx 1.5 LR (km) 19.93
Ly = πL (km) 5.0× 103 ρ (kg m−3) 1000
f0 (s−1) 1.032× 10−3 σB (W m2 K−4) 5.6× 10−8

λ (W m−2 K−1) 15.06 σ (m2 s−2 Pa−2) 2.16× 10−6

r (s−1) 1.0× 10−7 β (m−1 s−1) 1.62× 10−11

Co (W m−2) 310 γo (J m−2 K−1) 5.46× 108

Ca (W m−2) Co/3 γa (J m−2 K−1) 1.0× 107

kd (s−1) 3.0× 10−6 T 0
a (K) 289.30

k′
d

(s−1) 3.0× 10−6 T 0
o (K) 301.46

h (m) 136.5 εa 0.7
R (J kg−1 K−1) 287

– dissipation

One of the physical processes that was not included
in MAOOAM v1.0 (De Cruz et al., 2016) is the kine-
matic dissipation of energy due to turbulent diffusion,
which becomes increasingly important at smaller spa-
tial scales. This process is parametrised as a dissipation
term in the prognostic equations for the atmospheric
(barotropic) and oceanic streamfunction, which is pro-
portional to the squared Laplacian of the respective
streamfunction:

Do = νo∇
4ψo, (24)

Da = νa∇
4ψa. (25)

We adopt the values for the parameters νo and νa from
Van der Avoird et al. (2002), where they are estimated
to be

νo = 1.76× 104 m2 s−1, (26)

νa = 1× 105 m2 s−1. (27)

Furthermore, d is set to 1.1× 10−7 s−1.

– dissipationx10

In this experiment, d = 1.1×10−7 s−1, but the parame-
ters νo and νa are set to a higher value:

νo = 1.76× 105 m2 s−1, (28)

νa = 1× 106 m2 s−1. (29)

– dissipation-reducedstress

This experiment has the same parameters as the “dissi-
pation” experiment, except for the coupling parameter
d which is reduced to 4× 10−8 s−1.

Note that these idealised experiments do not take into ac-
count any dependence of the eddy (or turbulent) viscosity
on the truncation scale, as is usually done in turbulence (e.g.
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Lesieur, 1990). However, even at the higher resolutions ex-
plored so far, we are still far from the scaling regimes for
which these dependences may apply. In addition, the values
of the eddy viscosity coefficients used are typically valid for
a model configuration running at a spatial scale of the or-
der of 100 km (Van der Avoird et al., 2002), which is smaller
than the typical truncation used here. For this reason, we have
performed a second experiment with a higher eddy viscos-
ity coefficient. The problem of truncation and representation
of subgrid-scale processes is an important open problem in
climate modelling that needs careful attention. This matter
falls beyond the scope of the present investigation, but forms
the subject of a different study in the context of MAOOAM
(Demaeyer and Vannitsem, 2016). Note that in principle the
dissipated kinetic energy should become an input to the ther-
modynamic equations of the system as a positive heat source.
As discussed in Lucarini and Fraedrich (2009), neglecting
this process can have serious dynamical implications on long
temporal scales. Additionally, an imperfect representation of
this feedback between dynamics and thermodynamics is one
of the sources of serious imperfections on the closure of
the energy budget in climate models (Lucarini and Ragone,
2011; Lucarini et al., 2014). This issue will be analysed in
future investigations.

4 Results

4.1 PUMA

Here we present the results for the two different experiments
with PUMA, described in Sect. 3.3, and discuss our findings.

Figure 1 shows the 200 largest LEs of the two different
Lyapunov spectra obtained in our experiments with PUMA.
The averages were computed from a time series of 25 years
of daily finite-time LEs. We can estimate the size of the at-
tractor and by that estimate the degrees of freedom inherent
to the attractor with the Kaplan–Yorke dimension DKY, as
described in Sect. 3.1. The number of positive exponents and
DKY are shown in the caption of Fig. 1. Our findings confirm
earlier results using two-layer QG models that suggested an
increase in DKY and the number of positive Lyapunov expo-
nents for a higher meridional temperature gradient (Lucarini
et al., 2007; Schubert and Lucarini, 2015).

There are two very small exponents since the model set-up
is zonally symmetric, which in the limit of continuum creates
an additional zero mode (see Schubert and Lucarini, 2015,
for details). Otherwise, there are not many near-zero LEs
in PUMA. There is continuity between the timescales that
characterise the QG dynamics on the one hand, and faster,
smaller-scale motions on the other hand. This shows that
the usual assumption of a clear timescale separation adopted
when applying the filtering to derive the QG equations is, in
fact, rather stretched with respect to reality.
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Figure 1. The 200 largest LEs of the Lyapunov spectra of PUMA
for the two different set-ups with1TEP = 50 and 60 K. For1TEP =
50 K, the number of positive Lyapunov exponents is 61 andDKY =
172.6. For 1TEP = 60 K, the number of positive Lyapunov expo-
nents is 68 and DKY = 187.0.

Nevertheless, the 50 K spectrum in comparison to the 60 K
spectrum has a smaller slope where the LE are near zero and
negative. This may suggest the presence a longer term regime
switching behaviour. One potential source for such a regime
change is the switching between blocked and non-blocked
states of the mid-latitudes atmosphere.

We have computed the blocking rate employing the well-
established Tibaldi–Molteni Index (Tibaldi and Molteni,
1990). We indeed find a higher blocking rate for 50 K
(≈ 0.5 %) than for 60 K (≈ 0.25 %). We would like to explore
this connection further in future studies, especially in the di-
rection of studying the location of the CLVs during blocking
(Schubert and Lucarini, 2016).

Next, the existence of a large deviation law for the FTLEs
is verified, as described in Sect. 3.2. The decorrelation time
Tdecorr is usually between 1 and 3 days. Therefore the rate
function is computed for averages of length tave =m ·3 days.

In Figs. 2 and 5 the results for the rate functions are shown
for the fastest growing LE 1 (Fig. 2 and 3), fast-decaying
LE 150 (Fig. 4 and 5), the positive and negative near-zero
LEs 59 and 64 for 1TEP = 50 K (Fig. 6 and 7) and near-zero
LEs 66 and 71 for1TEP = 60 K (Fig. 8 and 9). Since Eq. (22)
is needed to compute the rate function, a long time series is
necessary to estimate the distribution P reliably.

Our intent is to make at least a qualitative assessment of
the convergence rate for m→ ∞. The top panels of these
figures show the approximation of the respective distribu-
tions obtained via kernel density estimation (Scott, 1979)
of the distribution of the block-averaged LEs. The bottom
panels show the rate function for different tave derived from
Eq. (22). A detailed investigation of other metrics, such as
the convergence of the variance, is provided in Appendix A.
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Figure 2. Distributions and rate functions of λ1, the fastest-growing
instability in PUMA, for 1TEP = 50 K. Panel (a) shows the differ-
ent distributions and their kernel-smoothing approximation of σ 1

m

where tave is the respective 3 m. Panel (b) shows a comparison of
the rate functions, with the minimum moved to zero.

We make the following observations. The graphs suggest
a convergence of the rate function for all LEs. Also, the
rate functions’ shape is approximately parabolic and the esti-
mates of the rate functions appear to converge to the asymp-
totic with a comparable speed regardless of the value of the
corresponding LE.

We interpret these results as stemming from the lack
of a clear-cut timescale separation in a purely atmo-
spheric model like PUMA. This is in opposition to what
was originally speculated in Schubert and Lucarini (2015),
where a primitive-equation model was expected to feature a
timescale separation visible in the Lyapunov spectrum. Such
a timescale separation would have been an a posteriori justi-
fication of the filtering by the QG approximation.

We have shown that in a primitive-equation model with a
high-dimensional phase space of ≈ 60 000 the dimension of
the attractor is small (order of 200) in comparison. Never-
theless, the unstable subspace can still be regarded as a high-
dimensional subspace with dimension of order of 50. We also
found sound results regarding the existence of a large devia-
tion law independent of the growth rate of the linear perturba-
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Figure 3. Distributions and rate functions of λ1, the fastest-growing
instability in PUMA, for 1TEP = 60 K. Panels as in Fig. 2.

tions. In hindsight with respect to the findings in MAOOAM
this can be explained with the absence of a clear timescale
separation.

4.2 MAOOAM

The Lyapunov analysis is performed on the set of model
configurations described in Sect. 3.4. Let us first evaluate
the impact of the resolution on the amplitude of the domi-
nant Lyapunov exponent. The largest Lyapunov exponent λ1,
which largely determines the limit of predictability, is plot-
ted as a function of the model resolution for each experi-
ment in Fig. 10. The dominant exponent λ1 does not display
a clear upward or downward trend versus model resolution
and seems to stabilise for higher resolutions. This interesting
feature suggests that the lower-order systems explored here
already display a qualitatively correct amplitude for the dom-
inant instability.

Furthermore, as we could expect, the predictability is en-
hanced for models where the scale-dependent dissipation
term is present. The decrease in λ1 also appears to suggest
an enhanced predictability for models which have a larger
ocean–atmosphere coupling parameter d , but this feature is
not so clear for higher-resolution versions. Vannitsem (2017)
studied the dependence of the predictability on this coupling
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Figure 4. Distributions and rate functions of λ150, a strongly de-
caying direction in PUMA, for 1TEP = 50 K. Panels as in Fig. 2.

parameter in the low-order 36-variable model that forms the
basis of MAOOAM. Two distinct mechanisms were iden-
tified to drive the increase in predictability with increasing
d . To a first approximation, the mechanical coupling of the
fast atmosphere to the slow ocean corresponds to an effective
friction term which reduces error growth in the atmosphere.
Moreover, increasing the ocean–atmosphere coupling above
a critical value induces a sudden jump in predictability, as-
sociated with the development of a slow coupled ocean–
atmosphere mode (Vannitsem et al., 2015; Vannitsem, 2017).

Figures 11 to 14 show the full sets of Lyapunov expo-
nents, or Lyapunov spectra, for the different experiments.
These figures reveal the presence of three ranges in the spec-
trum of Lyapunov exponents: the positive, negative near-
zero, and large-amplitude negative Lyapunov exponents, as-
sociated with the unstable, central, and stable manifolds, re-
spectively, in qualitative agreement with what was found in
Vannitsem and Lucarini (2016). We expect that the stable and
unstable manifolds mainly characterise the dissipative and
unstable motions of the atmosphere, while the central mani-
fold also projects considerably on the variables of the ocean.

The highly populated central manifold of MAOOAM is
in stark contrast to the few near-zero LEs in PUMA. Be-

f

Sh
ift

ed
 ra

te
 fu

nc
tio

n

Figure 5. Distributions and rate functions of λ150, a strongly de-
caying direction in PUMA, for 1TEP = 60 K. Panels as in Fig. 2.

ing a purely atmospheric model, PUMA’s Lyapunov spec-
trum does not exhibit the large timescale separation present
in MAOOAM. Indeed, the spectrum of PUMA bears more
resemblance to that of the QG two-layer model of Schubert
and Lucarini (2015).

Upon increasing the number of modes in the ocean and the
atmosphere, the number of positive Lyapunov exponents (in-
dicated with a vertical arrow) consistently increases, but not
as much as the number of strongly negative exponents. This
suggests that most of the additional spatial scales that are re-
solved by the higher-resolution models are highly dissipative,
hence increasing the number of strongly negative Lyapunov
exponents. The additional positive and near-zero exponents
that are introduced at these scales nevertheless indicate that
the added resolution still resolves some scales that are im-
portant for the description of the dynamics. This is in agree-
ment with the conclusion in De Cruz et al. (2016), where it
was shown that in order to describe the ocean dynamics, one
needs to be able to resolve the Rhines scale LRh =

√
U
β

, re-
quiring oceanic wavenumbers as high as of 40–50.

Figure 15 plots the Kaplan–Yorke dimension DKY as a
function of the model resolution. This shows that DKY is
the highest for the models that do not include the scale-
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Figure 6. Distributions and rate functions of λ59, a near-zero, grow-
ing instability in PUMA, for 1TEP = 50 K. Panels as in Fig. 2.

dependent dissipation process (nodissip). A reduction in the
ocean–atmosphere coupling d appears to slightly increase
DKY for most model resolutions, both in the case with and
without scale-dependent dissipation. The 10-fold increase in
the dissipation parameters νo and νa (dissipationx10) results
in the lowest values forDKY, as can be expected from a more
dissipative but still chaotic system.

As the number of dimensions increases quadratically and
not linearly for the consecutive model resolutions, it is in-
structive to rescale DKY by the number of dimensions N , as
shown in Fig. 16. This shows that while DKY increases with
resolution, the attractor dimension’s fraction of the full phase
space dimension decreases (even if slowly) with increasing
resolution from the atm. 6× 6, oc. 6× 6 models onward, for
all experiments, suggesting that one is adding in higher pro-
portion highly stable modes that do not necessarily play an
important role in the dynamics. In other words, we are not
in the regime where the system is extensive, as, in fact, the
geometry of the domain is fixed and we are capturing a larger
and larger (yet insufficient) fraction of the active dynamical
processes as the resolution is increased. Had we reached the
optimal resolution, Fig. 15 would be flat, and Fig. 16 would
approach zero.
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Figure 7. Distributions and rate functions of λ64, a near-zero, de-
caying instability in PUMA, for 1TEP = 50 K. Panels as in Fig. 2.

Figure 17 shows the Kolmogorov–Sinai entropy hKS ver-
sus model resolution, for the different experiments. The
trends for the “nodissip” and “nodissip-reducedstress” exper-
iments appear to suggest that hKS would increase unbound-
edly for increasing model resolution if a parametrisation for
the scale-dependent dissipation is absent. The experiments
that take this process into account paint a more realistic pic-
ture, with hKS levelling off at the highest model resolutions.

An additional experiment is performed by increasing the
resolution of the ocean and of the atmosphere separately
starting from a specific symmetric configuration “6× 6”.
Figure 18 displays the Lyapunov spectra for model con-
figuration “dissipation”. Two important features stand out:
(i) when the resolution of the atmosphere is increased, the
majority of the new exponents populate the stable manifold;
(ii) by contrast, when the resolution of the ocean is increased,
the number of slightly positive and slightly negative expo-
nents increases considerably. This also suggests that the in-
crease in Lyapunov dimension and the number of positive
exponents after a resolution of atm. 6× 6 – oc. 6× 6 should
be attributed to the presence of the ocean. In this sense the
ocean plays an active role in the development of the coupled
dynamics. Indeed, the quantityDKY/N , which approximates
the relative fraction of the attractor’s dimension, increases for
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Figure 8. Distributions and rate functions of λ66, a near-zero, grow-
ing instability in PUMA, for 1TEP = 60 K. Panels as in Fig. 2.

increasing ocean resolution, but decreases for increasing at-
mosphere resolution, as illustrated in Fig. 19. This result de-
serves an extensive investigation by looking at the properties
of the CLVs.

As a final analysis, we have given a preliminary look at
whether large deviation laws can be established for the long-
term statistics of the FTLEs. In what follows, we consider
the “9× 9” simulations. Similarly to what was found in a
previous analysis performed on a severely truncated version
of MAOOAM (Vannitsem and Lucarini, 2016), we find that
the time series of the FTLEs corresponding to the strongly
damped modes are weakly correlated. This would suggest
that one can construct the rate functions defining the large de-
viations laws. The rate functions are shown in Fig. 20a–c for
the 351st LE. Their convergence properties are investigated
in Appendix A2, and indicate that we have not yet converged
to the central limit theorem even for these strongly damped
modes. Additionally, the lagged time correlation of the near-
zero LEs are very strong and it makes no sense to look for
large deviation laws in this case.

In contrast to what was presented in Vannitsem and
Lucarini (2016), establishing large deviation laws for the
FTLEs associated with positive LEs is not trivial, even
when one considers the first FTLE. Lagged-time correla-

f

Sh
ift

ed
 ra

te
 fu

nc
tio

n

Figure 9. Distributions and rate functions of λ71 a near-zero, de-
caying instability in PUMA, for 1TEP = 60 K. Panels as in Fig. 2.
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Figure 10. The largest Lyapunov exponent λ1 of MAOOAM as
a function of the model resolution for the different experiments:
nodissip (red pluses), nodissip-reducedstress (green circles), dissi-
pation (blue upward-pointing triangles) dissipationx10 (purple di-
amonds), dissipation-reducedstress (orange downward-pointing tri-
angles).

tions are such that the available time series are not suffi-
ciently long to reach the asymptotic limit. This is even the
case in the nodissip simulation scenario, despite the larger
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Figure 11. Lyapunov spectra of MAOOAM for the “nodissip” ex-
periment, for model configurations from atm. 2× 4, oc. 2× 4 (red
full line) up to atm. 11× 11, oc. 11× 11 (pink dash-dot-dotted line).
Lyapunov exponents are ranked in decreasing order, and the in-
dex of the smallest positive Lyapunov exponent is indicated with
a downward-pointing arrow for each model configuration.
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Figure 12. Lyapunov spectra of MAOOAM for the “nodissip-
reducedstress” experiment. Colours and arrows as in Fig. 11.

value of the first LE and faster decay of correlations; compare
Fig. 21a–c. This suggests that when many unstable modes
are present, disentangling their long-term properties requires
very long integrations, possibly as a result of geometrical
quasi-degeneracies among such modes. This is an issue that
should be further explored, given its practical and theoret-
ical relevance. One can conjecture that the damped modes
do not feature such properties as their dynamics is mostly
driven by linear dissipative processes. Therefore, we propose
that an accurate analysis of the tangent space with the for-
malism of CLVs is required to advance our understanding of
predictability at medium and long timescales.

In brief, these results indicate that the dominant instabil-
ities of the coupled ocean–atmosphere system are well cap-
tured by MAOOAM, even at low resolutions. However, the
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Figure 13. Lyapunov spectra of MAOOAM for the “dissipation”
experiment. Colours and arrows as in Fig. 11.
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Figure 14. Lyapunov spectra of MAOOAM for the “dissipa-
tionx10” experiment. Colours and arrows as in Fig. 11.

increase in the Lyapunov dimension with the resolution im-
plies that the relevant dynamics of the system are not yet
fully resolved, in agreement with De Cruz et al. (2016).
The main role of the ocean in this matter is confirmed by
varying the ocean and atmosphere resolutions independently.
Conversely, increasing the resolution of the atmosphere only
adds highly dissipative modes. Finally, in contrast with what
was found for a low-order version of MAOOAM (Vannitsem
and Lucarini, 2016), large deviation laws cannot be estab-
lished for the near-zero and positive FTLEs in the “9× 9”
configuration.

5 Toward a new programme

The chaotic nature of the atmosphere and of the climate sys-
tem has been investigated in the present work in the con-
text of a primitive-equation atmospheric model and a coupled
ocean–atmosphere model. Both systems suggest that high-
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Figure 16. Kaplan–Yorke or Lyapunov dimension DKY of
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tion of the resolution for the different experiments. Colours as in
Fig. 10.

dimensional dynamical processes are at play with very inter-
esting distinct specificities.

The Lyapunov spectra of the two models considered
here have rather different qualitative features, as a result of
their structural differences, which have profound impacts
on the type of possible instability mechanisms. Following
Gallavotti and Lucarini (2014), one expects that if a clear
timescale separation between distinct dynamical regimes is
present, one should find that the Lyapunov exponents can be
divided into separate groups, corresponding to distinct clus-
ters in their values. This is the analogue in full nonlinear
terms of what is envisioned by the usual scale analysis of
GFD equations.

MAOOAM is a coupled quasi-geostrophic atmosphere–
ocean model, which, by definition, features a large timescale
separation between ocean and atmosphere, and lacks a satis-
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Figure 17. Kolmogorov–Sinai entropy hKS of MAOOAM as a
function of the resolution for the different experiments. Colours as
in Fig. 10.
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ified separately. Lyapunov exponents are ranked in decreasing or-
der, and the index of the smallest positive Lyapunov exponent is
indicated with a downward-pointing arrow for each model configu-
ration.

factory representation of mesoscale and sub-mesoscale pro-
cesses. PUMA is an atmospheric-only primitive-equation
model, which can represent the faster, smaller-scale insta-
bilities associated with processes occurring well below the
Rossby deformation radius. On the other side, the lack of an
active ocean component removes the presence of very slow
scales and does not allow for a built-in scale separation in the
dynamics.

We summarise here some findings.

– In PUMA the spectrum of Lyapunov exponents changes
in accordance with the paradigm that stronger baro-
clinic forcing leads to a more unstable atmosphere, as
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Figure 19. Kaplan–Yorke or Lyapunov dimension DKY of
MAOOAM divided by the total number of dimensionsN , as a func-
tion of the model configuration.

already observed in Schubert and Lucarini (2015) for
a quasi-geostrophic model. The model does not fea-
ture any separation of scale, as the Lyapunov spectrum
is quite smooth. As a result, one cannot clearly dis-
tinguish the modes corresponding to baroclinic insta-
bility, Kelvin–Helmholtz instability, etc. Despite this,
we find that for the lower meridional temperature gra-
dient (1TEP = 50 K) the spectrum features few near-
zero negative exponents. Interestingly, this might be re-
lated to the presence of blocking, but specific studies
with more robust dynamics between blocking and non-
blocking situations are necessary to clarify that. Addi-
tionally, the results suggest that the FTLEs obey large
deviation laws defining the predictability properties at
long timescales, including the near-zero exponents. The
model can be categorised as being nonuniformly hyper-
bolic with a trivial central manifold (the direction of the
flow).

– For MAOOAM the Lyapunov spectrum is shaped con-
siderably by the presence of the ocean, with a large por-
tion of exponents close to zero. The subspace associated
with these exponents corresponds to the central man-
ifold as in the theory of partially hyperbolic systems,
and presents features analogous to what was observed
in Vannitsem and Lucarini (2016). Furthermore, rais-
ing the ocean resolution in MAOOAM clearly increases
the number of both positive and negative near-zero Lya-
punov exponents, which implies a considerable increase
in the Lyapunov dimension of the attractor. Reducing
the intensity of the dissipative processes leads, as ex-
pected, to an increase in the instability of the model.

One can also conjecture that the set of physical modes,
as defined by Yang and Radons (2013), are not yet fully
populated since one would expect the isolated modes to
be strongly dissipative. This might imply that the reso-
lution necessary to correctly describe the dynamics of

Figure 20. Estimate of the rate function describing the large devia-
tion law of the 351st FTLE for MAOOAM with no dissipation (a),
reference value for the dissipation (b), and enhanced dissipation by
a factor of 10 (c).
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Figure 21. Estimate of the rate function describing the large devi-
ation law of the first FTLE for MAOOAM with no dissipation (a),
reference value for the dissipation (b), and enhanced dissipation by
a factor of 10 (c).

the system is much higher in the ocean. This aspect is
well known in ocean dynamics since the unstable baro-
clinic modes, which play an important role in the ocean
variability, can only be resolved with scales smaller than
50 km. Yet the question of defining an appropriate reso-
lution (or more exactly an appropriate set of dynamical
modes) for which the dynamics is well captured is still
open and the analysis of the CLVs in the spirit of Yang
and Radons (2013) and Vannitsem and Lucarini (2016)
can help answer this very important question.

The analysis of the FTLEs of MAOOAM reveals some
interesting insight into the dynamics. Surprisingly, it is
hard to find convergence for the rate functions of the
FTLEs, even for those associated with the positive LEs.
This may point to the presence of nontrivial ocean in-
fluence on the (mostly) atmospheric instabilities.

In the programme we want to develop starting from this in-
vestigation, we will employ CLVs in high-dimensional mod-
els to tackle various open problems. CLVs allow us to asso-
ciate growth and decay rates with time-dependent physical
modes, and provide a geographical portrait of where insta-
bility or damping develops.

First, what is the minimal but sufficient resolution? This is
a crucial question, in particular in view of the current com-
puter power needed to perform long-term numerical integra-
tions. A possible way to quantify where this threshold might
be, is by means of the different modes identified by Yang and
Radons (2013) using CLVs. The CLVs provide information
on the optimal splitting of physical modes that effectively
describe the dynamics of the system and the highly damped
modes. The latter can be considered noisy, purely dissipative
terms whose resolution is not necessarily relevant, and are
also called isolated modes. Yang and Radons (2013) inter-
preted them as the result of having a larger number of degrees
of freedom in the model than required to resolve all meaning-
ful physical processes. The central feature that allows for the
splitting is the angle between the CLVs. If two CLVs dis-
play angles around 90◦ and bounded away from 0◦, these
directions in phase space can be naturally split. Being able
to describe the physical modes is deemed essential for satis-
factorily reproducing the so-called inertial manifold. The in-
ertial manifold contains the effective finite-dimensional dy-
namics of the system, which, we recall, is originally infinite-
dimensional if we represent a continuum system described
by (S)PDEs. In particular, it would be interesting to deter-
mine how the threshold for resolving the inertial manifold
varies in a purely atmospheric model compared to a coupled
atmosphere–ocean model. Additionally, the analysis of ge-
ometry of the tangent space can clarify to what extent a sys-
tem can be treated – effectively, not rigorously – as hyper-
bolic versus partially hyperbolic. As explained in Vannitsem
and Lucarini (2016), this has profound implications for pre-
dictability.
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Second, we want to understand multiscale instabilities bet-
ter and find out what the driving processes are behind their
growth. Here, the covariance of the CLVs with the tangent
linear equation is the key for understanding instabilities and
their properties far away from an equilibrium. Traditionally,
even in a chaotic setting such an analysis relied on classic
normal mode instability of fixed stationary states (e.g. Char-
ney, 1947; Eady, 1949; Pedlosky, 1964) to explain phenom-
ena like the baroclinic and barotropic instability. This ap-
proach has been very beneficial but has many known short-
comings for the understanding of highly nonlinear phenom-
ena such as wave–wave interactions (Speranza and Malguzzi,
1988) or regime switching like blocking (Pelly and Hoskins,
2003). Additionally, CLVs will allow us to better under-
stand coupled ocean–atmospheric modes. We wish to de-
velop our future programme in line with Schubert and Lu-
carini (2015, 2016), who demonstrated that CLVs give a pic-
ture of which types of instabilities exist in an atmospheric
quasi-geostrophic (QG) two-layer model and of the ener-
getics behind them. For example, the fastest modes can be
almost exclusively barotropically unstable even though tra-
ditional normal mode analysis suggests the most unstable

modes are driven by baroclinic energy conversion. Given
these findings, we expect an even more diverse mixture of
different types of instabilities in multiscale systems such as
PUMA or MAOOAM. This approach is a promising alter-
native to restricting the analysis to either studying idealised
life cycles of instabilities (Plougonven and Zhang, 2014) or
studying yet again normal modes (Molemaker et al., 2005).

Code availability. The PUMA model is a part of
PLASIM, for which the source code can be down-
loaded at https://www.mi.uni-hamburg.de/en/arbeitsgruppen/
theoretische-meteorologie/modelle/sources/plasim.tgz (last ac-
cess: 14 March 2018). The source code for the latest version of
MAOOAM is available at http://github.com/Climdyn/MAOOAM
(last access: 13 December 2017). The version of MAOOAM
that was used to compute the Lyapunov exponents is archived at
https://doi.org/10.5281/zenodo.1198650 (De Cruz et al., 2018).

Data availability. The Lyapunov spectra of the different PUMA
and MAOOAM configurations, which were computed using the
Benettin algorithm, are available as a Supplement.
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Appendix A: Study of the convergence of the rate
function

We have performed an additional analysis that focuses on
the convergence of the standard deviation σ of the FTLE as
a function of the length tave used to compute the block aver-

ages. Indeed, σ is expected to scale according to t
−

1
2

ave . Fur-
thermore, one expects the value of σ 2

· tave to level off at the
value of the diffusion coefficient D if there is convergence
to the central limit theorem. The diffusion coefficient D is
the inverse of the second derivative of the rate function at its
minimum; see e.g. Kuptsov and Politi (2011).

A1 PUMA

The scaling of σ versus tave has the expected behaviour
for both experiments conducted with PUMA, as shown in
Fig. A1. This is also apparent in the convergence of σ 2

· tave,
shown in Fig. A2. While the value of D fluctuates, it has the
right order of magnitude.

d

Figure A1. Standard deviation σ as a function of the block averaging length tave for different Lyapunov exponents of the PUMA model. The
Lyapunov index is shown in the legend. Panel (a) shows the results for a temperature gradient 1TEP of 50 K, panel (b) for 60 K. The black

dashed line corresponds to t
−

1
2

ave scaling.

A2 MAOOAM

The decorrelation time of the near-zero FTLEs in MAOOAM
is extremely long. Accordingly, the time intervals tave, used
to determine the rate functions associated with the FTLE, are
expected to be insufficient to robustly define large deviation
laws describing the statistics of the FTLEs. This is confirmed
by the behaviour of σ versus tave for the “9× 9” model con-
figuration, shown in Fig. A3. A discrepancy between D and
σ 2
· tave is apparent for LE 100 in all experiments shown in

Fig. A4. Even for positive or strongly negative LEs, we are
not yet in the regime of convergence to the central limit theo-
rem. Note however that an integration time of 614 years was
used to compute the Lyapunov spectra, longer than the time
series used in this analysis.
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Figure A2. The metric σ 2
· tave versus the diffusion coefficient D, derived from the inverse of the second derivative at the minimum of the

rate function, as a function of the block averaging length tave for different Lyapunov exponents of the PUMA model. The Lyapunov index is
shown in the title. Panels (a) show the results for a temperature gradient of 50 K, panels (b) for 60 K.
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Figure A3. Standard deviation σ as a function of the block averaging length tave for different Lyapunov exponents of the “9× 9” configu-
ration of MAOOAM. The Lyapunov index is shown in the legend. Panel (a) shows the results for the experiment without scale-dependent
dissipation, panel (b) corresponds to the reference value for dissipation, and panel (c) shows the enhanced dissipation results. The black

dashed line corresponds to t
−
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ave scaling.
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Figure A4. The metric σ 2
· tave versus the diffusion coefficient D, derived from the inverse of the second derivative at the minimum of the

rate function, as a function of the block averaging length tave for different Lyapunov exponents of the “9× 9” configuration of MAOOAM.
Note the logarithmic scale of the y-axis, in contrast to Fig. A2. The Lyapunov index is shown in the title. Panels (a) show the results for the
experiment without scale-dependent dissipation, panels (b) correspond to the reference value for dissipation, and panels (c) show the results
for an enhanced dissipation coefficient.
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