New insights from the Jülich Ozone-Sonde Intercomparison Experiments (JOSIE): calibration functions traceable to one ozone reference instrument

1 New Insights From The Jülich Ozone-Sonde Intercomparison
2 Experiments: Calibration Functions Traceable To One Ozone Reference
3 Instrument

4 Herman G.J. Smit¹, Deniz Poyraz², Roeland Van Malderen², Anne M. Thompson³,⁴, David W. Tarasick⁵, Ryan M. Stauffer⁶, Bryan J. Johnson⁶, Debra E. Kollonige⁶,⁷

+ all results for 4 other sonde type – sensing solution combinations, relative contributions of the different components of the TRCC method, uncertainty estimation of the TRCC method
• Introduction
• Principles of “new” method
• Data
• Time Responses Correction (TRC) Method
• Application on JOSIE data
• Application on sounding data
• Conclusions and outlook
Ozonesonde data are of very high quality. Current processing, especially after homogenization, makes it an absolute measuring device.
Ozonesonde data are of very high quality. Current processing, especially after homogenization, makes it an absolute measuring device.

But this processing uses...

1. improper Komhyr pump efficiency corrections η_P
2. a constant background current I_B
3. a constant conversion efficiency η_C of the (main) chemical reaction equal to 1

However, we know...

1. measured pump efficiency factors, consistent between different labs in several decades
 \rightarrow Johnson et al. (2002), Nakano & Morofuji (2023)
2.
3.
4.

$$P_{O3} = 0.043085 \frac{T_P}{(\eta_P \eta_A \eta_C \Phi_{P0})} (I_M - I_B)$$
• Ozonesonde data are of very high quality. Current processing, especially after homogenization, makes it an absolute measuring device.

• But this processing uses…
 1. improper Komhyr pump efficiency corrections η_P
 2. a constant background current I_B subtraction (which? origin?)
 3.

• However, we know…
 1. measured pump efficiency factors, consistent between different labs in several decades → Johnson et al. (2002), Nakano & Morofuji (2023)
 2. (part of) background current = slow time response of chemical reaction (5%, past ozone exposure dependent = hysteresis effect) → Tarasick et al. (2021), Vömel et al. (2020)
 3.
 4.
Ozonesonde data are of very high quality. Current processing, especially after homogenization, makes it an absolute measuring device.

But this processing uses...

1. improper Komhyr pump efficiency corrections \(\eta_P \)
2. a constant background current \(I_B \) subtraction (which? origin?)
3. a constant conversion efficiency \(\eta_C \) of the (main) chemical reaction equal to 1

However, we know...

1. measured pump efficiency factors, consistent between different labs in several decades \(\rightarrow \) Johnson et al. (2002), Nakano & Morofuji (2023)
2. (part of) background current = slow time response of chemical reaction (5%, past ozone exposure dependent = hysteresis effect) \(\rightarrow \) Tarasick et al. (2021), Vömel et al. (2020)
3. conversion efficiency increases in the course of a sounding (evaporation of solution)
4.
• Ozonesonde data are of very high quality. Current processing, especially after homogenization, makes it an absolute measuring device.

• But this processing uses…

1. improper Komhyr pump efficiency corrections η_P
2. a constant background current I_B subtraction (which? origin?)
3. a constant conversion efficiency η_C of the (main) chemical reaction equal to 1

• However, we know…

1. measured pump efficiency factors, consistent between different labs in several decades \rightarrow Johnson et al. (2002), Nakano & Morofuji (2023)
2. (part of) background current = slow time response of chemical reaction (5%, past ozone exposure dependent = hysteresis effect \rightarrow Tarasick et al. (2021), Vömel et al. (2020)
3. conversion efficiency increases in the course of a sounding (evaporation of solution)
4. the primary chemical reaction (95%) has a fast time response with time constant $20-25$ s \rightarrow corrections proposed in Imai et al. (2013), Huang et al. (2015)
Principles of “new” method

Pre-launch procedure at Uccle (N = 365-840)

a) 10 min @ 150-200 ppb → 10 min @ no O₃ → switch pump off

b) no O₃ @ 60 min, 120 min (pump on again)

Findings:

- fast time response (t = 20-25 sec) dominates when switching to no O₃
- almost no contribution of fast component to I_M after 4 minutes
- slow time response (t = 20-25 min) of signal takes it over afterwards

$I_{\text{B0}} = 0.011 \pm 0.010 \mu\text{A} (N = 841)$

$I_{\text{B1}} = 0.045 \pm 0.034 \mu\text{A} (N = 841)$
Principles of “new” method

Pre-launch procedure at Uccle (N = 365-840)

a) 10 min @ 150-200 ppb → 10 min @ no O₃ → switch pump off
b) no O₃ @ 60 min, 120 min (pump on again)

Findings:
- fast time response (t = 20-25 sec) dominates when switching to no O₃
- almost no contribution of fast component to I_M after 4 minutes
- slow time response (t = 20-25 min) of signal takes it over afterwards
- at 60 min & 120 min: excess current w.r.t. slow response: I_{B0} (current measured before O₃ exposure)

$\rightarrow I_M = I_F + I_S + I_{B0}$
JOSIE measurements in Environmental Simulation Facility in Jülich

- response test (RT) intervals in JOSIE 2009/2010
- 2 manufacturers (ENSCI, SPC), two solution strengths
- reference photometer in chamber

- I ECC: original ECC current
- I OPM: current measured by reference photometer in Jülich
- I slow conv.: convolved “slow” part of the signal
- iB0: background current before O₃ exposure

➔ contribution S_s of slow component?
Contribution S_S of slow component?

- contribution ranges between 1.7 and 5%
- similar solutions = similar contributions
- larger contributions for higher KI concentration and **higher buffer strength**
- independent of sonde manufacturer
- independent of response test interval used (atmospheric conditions)
In practice: \((I_M = I_F + I_S + I_{B0}) \)

- subtract \(I_{B0} \) from measured currents \(I_M \)
 \((I_A = I_M - I_{B0}) \)
- determine slow component \(I_S \),
 - calculated as 25 minute (exponential) delayed signal, multiplied with its relative contribution \(S_S \)
 - subtract from the ECC current ("background current", but time/ozone exposure dependent)
- remaining fast component (\(= I_A - I_S \)) can be corrected for 20-25 s time response (\(I_{F,D} \)).

=> TRC method, see also Vömel et al. (2020)
<> role of \(I_{B0} \), smaller \(S_S \)
Application on JOSIE

Application on JOSIE 2009/2010 (mid-latitude) data

- Large reduction of rel. differences around response time (RT) intervals
- Major improvement with TRC: independent on ozone profile or pressure
- Slightly linearly increasing bias with decreasing pressure

2 recommended standards in the network
Application on JOSIE

Application on JOSIE 2017 (tropical) data

- 2 recommended standards in the network

- Large reduction of rel. differences UT!
- Major improvement with TRC: independent on ozone profile or pressure
- Slightly linearly increasing bias with decreasing pressure
Determination of calibration functions

- remaining linear regression lines are very similar for both campaigns (mid-lat vs. tropical)
- calculate those for the entire samples, for every sonde type – SST combination
- “calibration functions” to the OPM (conversion efficiency)

- After applying the TRC + calibration functions (“TRCC”): differences are within ±1% for almost the entire pressure range (except the lowest pressures)
- Now referenced to the OPM
Application on sounding data

Conventional vs TRCC:

- Remarkably improved agreement between ascent and descent profiles (→ correction for fast time response component) with TRCC.
- Also better agreement in ascent/descent profile shapes with TRCC.
- Lower UT ozone concentrations in tropical Samoa and ozone hole at South Pole.
- Amplification of features in TRCC profiles after correcting for the fast time constant (>< increased noise?)
Application on sounding data

- Remarkably improved agreement between ascent and descent profiles (→ correction for fast time response component) with TRCC
- Also better agreement in ascent/descent profile shapes with TRCC
- Lower UT ozone concentrations in tropical Samoa and ozone hole at South Pole
- Amplification of features in TRCC profiles after correcting for the fast time constant (> < increased noise?)
Conclusions and outlook

• Time Responses Correction method as described/illustrated by Tarasick et al. (2021) & Vömel et al. (2020) further developed with all available JOSIE data

• Time Responses Correction method looks very promising, implementing all the (real pump efficiency) measurements and (chemical) knowledge we have
 ✓ role for I_{B0}
 ✓ relative contribution of slow component (= signal convolved with $t= 25$ min exponential delay) varies between 1.5 and 5%
 ✓ correction for fast time response (= deconvolved $I_M - I_{B0} - I_S$ with $t=20-25$ s exponential delay) improves ozone gradient and amplifies features (smoothing!)

• but: need for calibration functions (“conversion efficiency”) to trace observations back to the photometer in Jülich → related to fast primary chemical reaction???

• still a lot to be learned about (the chemistry of) the ozonesonde

• implementation in the global ozonesonde network is envisioned.
References

